一元二次函數(shù)頂點(diǎn)坐標(biāo)公式是什么(一元二次函數(shù)頂點(diǎn)坐標(biāo)公式)
您好,今天小編胡舒來為大家解答以上的問題。一元二次函數(shù)頂點(diǎn)坐標(biāo)公式是什么,一元二次函數(shù)頂點(diǎn)坐標(biāo)公式相信很多小伙伴還不知道,現(xiàn)在讓我們一起來看看吧!
1、"二次函數(shù)頂點(diǎn)坐標(biāo)公式與一元二次方程求根公式有關(guān)系嗎"這個(gè)問題本身就有問題,二次函數(shù)與一元二次方程的聯(lián)系 如下,你仔細(xì)閱讀以下吧。
2、二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c, 當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程), 即ax^2+bx+c=0 此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。
3、 函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
4、 1.二次函數(shù)y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表: 解析式 y=ax^2; y=ax^2+K y=a(x-h)^2; y=a(x-h)^2+k y=ax^2+bx+c 頂點(diǎn)坐標(biāo) (0,0) (0,K) (h,0) (h,k) (-b/2a,4ac-b^2/4a) 對(duì) 稱 軸 x=0 x=0 x=h x=h x=-b/2a 當(dāng)h>0時(shí),y=a(x-h)^2;的圖象可由拋物線y=ax^2;向右平行移動(dòng)h個(gè)單位得到, 當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到. 當(dāng)h>0,k>0時(shí),將拋物線y=ax^2;向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象; 當(dāng)h>0,k<0時(shí),將拋物線y=ax^2;向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2-k的圖象; 當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x+h)2+k的圖象; 當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;在向上或向下.向左或向右平移拋物線時(shí),可以簡(jiǎn)記為“上加下減,左加右減”。
5、 因此,研究拋物線 y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2;+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便. 2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2;]/4a). 3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而減小;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而增大;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而減小. 4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn): (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c); (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0 (a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?| 另外,拋物線上任何一對(duì)對(duì)稱點(diǎn)的距離可以由|2×(-b/2a)-A |(A為其中一點(diǎn)的橫坐標(biāo)) 當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn); 當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0. 5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x= -b/2a時(shí),y最小(大)值=(4ac-b^2)/4a. 頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值. 6.用待定系數(shù)法求二次函數(shù)的解析式 (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式: y=ax^2+bx+c(a≠0). (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸或極大(小)值時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0). (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0). 7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。
6、因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).。
本文就為大家分享到這里,希望小伙伴們會(huì)喜歡。
作者:baidianfeng365本文地址:http://www.inkvzc.cn/bdf/48033.html發(fā)布于 2024-05-31
文章轉(zhuǎn)載或復(fù)制請(qǐng)以超鏈接形式并注明出處白癜風(fēng)知識(shí)網(wǎng)