一元二次函數頂點坐標公式是什么(一元二次函數頂點坐標公式)

摘要: 您好,今天小編胡舒來為大家解答以上的問題。一元二次函數頂點坐標公式是什么,一元二次函數頂點坐標公式相信很多小伙伴還不知道,現在讓我們一起來看看吧!1、"二次函數頂點坐標公式與一元二...

您好,今天小編胡舒來為大家解答以上的問題。一元二次函數頂點坐標公式是什么,一元二次函數頂點坐標公式相信很多小伙伴還不知道,現在讓我們一起來看看吧!

1、"二次函數頂點坐標公式與一元二次方程求根公式有關系嗎"這個問題本身就有問題,二次函數與一元二次方程的聯系 如下,你仔細閱讀以下吧。

2、二次函數(以下稱函數)y=ax^2+bx+c, 當y=0時,二次函數為關于x的一元二次方程(以下稱方程), 即ax^2+bx+c=0 此時,函數圖像與x軸有無交點即方程有無實數根。

3、 函數與x軸交點的橫坐標即為方程的根。

4、 1.二次函數y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表: 解析式 y=ax^2; y=ax^2+K y=a(x-h)^2; y=a(x-h)^2+k y=ax^2+bx+c 頂點坐標 (0,0) (0,K) (h,0) (h,k) (-b/2a,4ac-b^2/4a) 對 稱 軸 x=0 x=0 x=h x=h x=-b/2a 當h>0時,y=a(x-h)^2;的圖象可由拋物線y=ax^2;向右平行移動h個單位得到, 當h<0時,則向左平行移動|h|個單位得到. 當h>0,k>0時,將拋物線y=ax^2;向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象; 當h>0,k<0時,將拋物線y=ax^2;向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2-k的圖象; 當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x+h)2+k的圖象; 當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)2+k的圖象;在向上或向下.向左或向右平移拋物線時,可以簡記為“上加下減,左加右減”。

5、 因此,研究拋物線 y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2;+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便. 2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2;]/4a). 3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a<0,當x ≤ -b/2a時,y隨x的增大而增大;當x ≥ -b/2a時,y隨x的增大而減小. 4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點: (1)圖象與y軸一定相交,交點坐標為(0,c); (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0 (a≠0)的兩根.這兩點間的距離AB=|x?-x?| 另外,拋物線上任何一對對稱點的距離可以由|2×(-b/2a)-A |(A為其中一點的橫坐標) 當△=0.圖象與x軸只有一個交點; 當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0. 5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x= -b/2a時,y最小(大)值=(4ac-b^2)/4a. 頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值. 6.用待定系數法求二次函數的解析式 (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式: y=ax^2+bx+c(a≠0). (2)當題給條件為已知圖象的頂點坐標或對稱軸或極大(小)值時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0). (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0). 7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。

6、因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.。

本文就為大家分享到這里,希望小伙伴們會喜歡。